A pragmatic methodology to abstract the EDZ around tunnels of a geological radioactive waste repository. Application to the HG-A experiment in Mont Terri.

- A. Alcolea, U. Kuhlmann (TK Consult AG)
- P. Marschall (NAGRA)
- B. Lanyon (Fracture Systems Ltd.)
- A. Lisjak, G. Grasselli, O. Mahabadi (Geomechanica Inc.)
- R. de La Vaissière (ANDRA)
- H. Leung (NWMO)
- H. Saho (BGR)

### Outline

### Context

- Radioactive waste in CH
- The need for abstracted models
- Methodology
- Application. HG-A experiment
- Concluding remarks



# 1. Context. Radioactive waste in Switzerland

### Sites for the disposal of radioactive waste in CH. Target = OPA



### Provisional Safety Analysis (SA) on long term repository induced effects:

- pH plume back-fill of L/ILW caverns.
- accumulation and release of repository gases.
- heat emission of HLW canisters.
- Excavation Damaged Zone (EDZ) around back-filled structures.



# 1. Context. The need for abstracted models

 Traditional THM models not wellsuited to Safety Analysis either due to simplicity (e.g., piece-wise homogeneous) or complexity (long model runs, etc.).



Lanyon et al. (2009)

- SA demands models that are:
  - Simple and fast
  - Plausible
  - Heuristic, based on physical processes
  - Validated
- Prior work (EAGE Porto, 2014): EDZ abstraction methodology.

#### 📚 TK Consult AG

Hallenstrasse 10 8008 Zürich (Switzerland)

Tel: +41 (0)44 / 310 14 70 email: tkc@tkconsult.ch web: www.tkconsult.ch





## 2. Methodology. Upscaling





**FEMDEM** 

#### 📚 TK Consult AG

Hallenstrasse 10 8008 Zürich (Switzerland)

Tel: +41 (0)44 / 310 14 70 email: tkc@tkconsult.ch web: www.tkconsult.ch







$$K = K_m + K_f$$

K

### **COMPOSITE**

### 2. Methodology. Temporal evolution of parameters

### **Resaturation of fractures :**

- (1)  $\Delta p>0$ , from  $p_{atm}$  to  $p_h \rightarrow$  decrease of  $\sigma_n' \rightarrow$  fracture closure  $\rightarrow K_f$  and  $\phi_f$  decrease
- (2) Matrix is clay rich -> swelling.  $K_m$  and  $\phi_m$  increase

**Overall, reduction of EDZ transmissivity** 



📚 TK Consult AG

Hallenstrasse 10 8008 Zürich (Switzerland)

Tel: +41 (0)44 / 310 14 70 email: tkc@tkconsult.ch web: www.tkconsult.ch

## 2. Methodology. Temporal evolution of parameters

### At each time step:

(1) Calculate fracture aperture from pressure (effective stress) :

$$b(t) = b_0 - \frac{1}{b_0 K_{n0} \Delta p(t)^{\alpha - 1} + 1}$$

Modified Barton-Bandis' model  $\alpha$ : closure rate

- (2) Recalculate fracture transmissivity and porosity and upscale to grid:  $K_f$  and  $\phi_f$
- (3) Assuming that total porosity  $\phi$  does not change in time, calculate  $\phi_m$ :

$$\phi_m = \frac{\phi - \phi_f}{1 - \phi_f}$$

(4) Calculate Km from  $\phi_m$  using Kozeny-Carman equation:

$$K_m(t) = \frac{\phi_m(t)^3}{(1 - \phi_m(t))^2} \cdot \frac{\rho \cdot g}{\mu} \cdot \frac{d_{10}^2}{180}$$

(5) Recalculate total  $K = K_f + K_m$  and simulate pressure with updated fields

 TK CONSULT AG

 Hallenstrasse 10

 8008 Zürich (Switzerland)

 Fel: +41 (0)44 / 310 14 70

 email: tkc@tkconsult.ch

 web: www.tkconsult.ch





| Analysis                                      | Reference                       |
|-----------------------------------------------|---------------------------------|
| Response to excavation                        | Marschall et al., 2006 and 2008 |
| Test section saturation and hydraulic testing | Lanyon et al., 2009             |
| Gas testing                                   | Lanyon et al., 2014             |



Hallenstrasse 10 8008 Zürich (Switzerland)

Tel: +41 (0)44 / 310 14 70 email: tkc@tkconsult.ch web: www.tkconsult.ch



### Different FEMDEMS mimicking different local stress conditions



### Model discretization, boundary conditions and extent







#### 6<sup>th</sup> International conference on Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Brussels, Belgium

#### 📚 TK Consult AG

Hallenstrasse 10 8008 Zürich (Switzerland)

Tel: +41 (0)44 / 310 14 70 email: tkc@tkconsult.ch web: www.tkconsult.ch

- Calibration parameters (not exhaustive search, but trial and error):
  - $\alpha$ , the rate of fracture closure. Low  $\alpha$  = high rate of closure.
  - β, dampening factor mimicking:
    - the transfer of mechanical energy between megapacker and formation
    - skin effect
- Least squares minimization of misfit at HG-A2 and HG-A3. Model not aimed at fitting perfectly available measurements, but at "ressembling trends". Instead, we seek a heuristic model that is simple, abstractable, based on empirical observations and that captures the physical nature of the phenomenon.
- Local stress conditions highly uncertain. This methodology also allows the selection of the best structural model.









Animation of pressure and of K



End members and abstraction of HG-A



# 4. Conclusions

- An abstraction methodology to go from extremely complex EDZ models to simple piecewise heterogeneous models, wellsuited to SA.
- Sequential approach: mechanical simulations of EDZ formation and development, then decoupled hydromechanical simulations.

